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DESIGN OF CIRCULAR CYLINDRICAL SHELLS OF MINIMUM WEIGHT 
WITH FIXED NATURAL OSCILLATION FREQUENCIES* 

A.S. BRATUS' 

Approximate solutions are obtained , using asymptotic methods, of the 
problem of the optimum design of cylindrical shells of variable thickness, 
of minimum weight for fixed natural oscillation frequencies in the axis- 
ymmetric and non-axisymmetric cases. Qualitative patterns of the thickness 
distribution for optimum solutions are obtained and analyzed. 

1. Basic equations. Consider the natural oscillations of a circular cylindrical 
shell of variable thickness. We assume that the mean surface is specified in curvilinear 
coordinates x and a in such a way that the first quadratic form has the form R=(cW + dd), 
where R is the radius of the circular cylindrical shell, x varies along the generatrix, and 
a is an angular coordinate that varies in the transverse direction. We shall consider shells 

with straight cutoffs, that, in dimensionless variables (5, a), occupy the rectangular region. 

D = {x, a : 0 < x < k, 0 < a Q a, < 2x}, k = LIR 

where 1 is the shell length. 
The set of equations in displacements, which determines the natural oscillations of a 

circular cylindrical shell of variable thickness h (x, a) can be expressed (e.g., /l/j in the 
form 

(1.1) 
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where p is Poisson's ratio, IsO2 = (12 l?y and h = h(z,a) is the shell thickness. 
We denote by z(z,a) in (1.1) the victor function of displacements Z* = (U (x, a), u (5, a) 

1~ (x, a)), where u, v, w are the displacement components in the directions of the generatrix, 
the directrix, and of the normal to the cylindrical shell, respectively, h is the problem 
eigenvalue, p is the material density, E is Young's modulus, and 61 is theoscillation frequency. 

The operator A (h) is formally selfconjugate,. which means that for any smooth vector 
functions z1 and z, that vanish in the neighbourhood of the r boundary of region Dthe identity 

(A (h) ~19 ~2) = (s,, A (h) zg) (1.2) 
holds. 

Here and henceforth parentheses denote a scalar product in the three-component vector 
space of the functions 

(zl, %)=g(u& + ~1~2 + *~~~.p)dzda 

If the vector functions z1 and z, do not become identically zero in the rneighbourhood, 
the boundary conditions which must be imposed on the components of the vector q to satisfy Eq. 
(1.2) are called selfconjugate. Henceforth we will consider only one of the so-called self 
conjugate boundary conditions /2/, namely those of hinged support (the Navier conditions) 

(w,r=(+g)r -0, (g-t&), =o (1.3) 

The solution of the boundary value problem (1.1),(1.3) is understood in the weak sense. 
Let V be the set of vector functions z&a) with components from CQ(ZJ) that satisfy (1.3). 
We denote by H,(D) the Sobolev space of three-cmpnent vector functions which have square 
summable derivatives up to the second order inclusive. 

W(D). 

The closure of the set V in H*(D) is 
denoted by The vector function ZE W(D) is the solution of problem (1.1),(1.3) in 
the weak sense, if for any vector function z, E W(D) the equation 

(A (h) z, ~1) = a (hs, sJ 
holds. 

Let us assume that the distribution of the circular cylindrical shell thicknesses is sel- 
ected from the set of functions Q defined by the equation 

where c,arb are positive constants selected so that the set Q is non-empty. 
The first of conditions (1.4) defines the limit on the growth of the derivatives of the 

admissible thickness distribution. The necessity for this condition follows from the results 
obtained in /3/ and guarantees the existence of a solution of the optimization problem which 
will be considered below. 

From the mechanics point of view the absence of the first condition (1.4) means that the 
thickness gradient is arbitrary , which raises doubts about the validity of the hypothesis of 
the rectilinear normal element which is the basis of the theory of thin shell deformations. 

The second of conditions (1.4) limits the magnitude of the minimum and maximum thickness 
distribution. 

The compactness of the imbedding H,(D) -L,(D) implies that /4/ the spectral problem 
(1.1) has a sequence of non-zero solutions z',, (i= 1,2,3,...), that 
of eigenvalues V-fh such that 

corresponds to the sequences 

(A (it) a’, z) = hf (hz*h, z), Vz E W(D) 

o<hhlghh’< . . . < hh’ Q . . . 
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The subscript h on the functions zi and the numbers Ai is introduced to smphasise that 
the solution of problem (1.1) depends on the selected thickness distribution ll(x,a)~ Q. 

2. Statement of the optimization problem. IR many cases the natural oscillations 
of circular cylindrical shells can be separated into predominantly longitudinal, and transverse 
oscillations (for a fuller classification of.oscillations see /2/). Each form of oscillation 
has its own eigenvalue for one and the same eigenfunction. 

Consider the problem of designing a minimum volume (weight) shell for which the frequency 
of one of the predominant oscillation forms is not less than some specified fixed value. The 
design consists of making a suitable selection of the shell thickness distribution Qspecified 
by Eq.U.4). 

Let J." be a fixed positive number, and h(h) the smallest of the eigenvalues thatcorresp- 
ond to predominantly transverse oscillhtions hEQ. In this case the problem can be form- 
ulated as follows. Find an h=Q such that 

ss 
D 
h(s,a)dxda+m;n, h(h)>h" 

Obviously the solution of problem (2.1) does not exist for all 1". As a reasonable h" 
we can take the smallest of the eigenvalues that corresponds to predominantly transverse osc- 
illations for a shell of constant thickness h,,a.<h,<b. Problem (2.1) then becomes a 
problem of designing an optimal shell of variable.thickness of minimum volume (weight) whose 
eigenvalue, which corresponds to one of the chosen form of predominant oscillations, is not 
less than the respective eigenvalue of a shell of constant thickness. 

3. The asymptotic approach to the problem of optimization. The solution of 
the problem is'linked to the need for a multiple variation of h from Q and to finding a sol- 
ution of (1.1),(1.3), which gives rise to well-known difficulties. On the other hand, inmany 
important cases the range variation of the thickness distribution is very narrow,which enables 
us to use asymptotic methods by considering the shell as a weakly controllable system. 

Let us assume that the function h(s,a)EQ varies as follows: 

h (2, a) = he + ehI (z, a); e > 0, h, = const 

The set Q defined by Eq.(1.6) then becomes the set 

(3.1) 

(3.2) 

Without loss of generality, we can assume that h, = 1, which can always be achieved by 
introducing the new dimensionless function 

+qj.L eh (x, a) (3.3) 

Hence the limit on the minimum and maximum value of h&cc) in (1.4) i.e. 0 < a < h (x, 
a) < b becomes the limit I h’ (A 4 I B 1. if a = h,--E and b = h, + e, i.e. when the 
maximum range of variation of the thickness h’ is equal to 2e. 

In deriving the equations of the theory of shells it is assumed that quantities of the 
order of (h/R)’ can be neglected. Allowing for this, we have 

(h&R)% < eh,lR _ e h&R < h,iR 

from which follows that h,lR<e<l, otherwise the quantity a h,lR becomes comparable with 

the error of the mathematical model of the problem. 
Henceforth the primes on the functions h and h, are omitted for convenience. 
According to Rellich's theorem /5-7/ the spectrum of the operator A (h) defined by Eqs. 

(1.1) for h = 1 + sh, can be represented in the form of an analytic perturbation of the spec- 
trum of the operator A (h,) = A”. The operator A" is defined by formulas (l.l), if we set 

h (2, a) - 1. Using (3.1) we represent the operator A (h) in the form of a sum in powers of 
the parameter e A 

A (h) = 2 a’A* (h,) 
ir 

(3.4) 

To determine the components of the operator A’(h,) it is necessary to substitute in form- 

ulas (1.1) h, (.t, a), for h(s,a) and 3h,(z, a), for h3 (x, a), while the coefficient 6,,2 (taking 

into account the substitution (3.3)) becomes equal to &2 = It,,* (12 Ro)-‘. 
The eigenvalues of the spectral problem and the eigenfunctions may be represented in the 

form of series in powers of e 
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XL(h) = ijo ei)Lkg i (h,), zhk = is e'zkv ihl. (3.5) 

Substituting (3.4) into (3.5) and collecting terms of the zeroth and first power of e, 

we obtain the boundary value problem for the zeroth and first approximation of the input spec- 
tral problem (1.1) of the form 

(A"zk, 0, z)= hk,"(zk. 0, z), Vz 65 W (D) (3.6) 

(A ‘zk.l, z) + (A’(h,) 3.0, z) = Jvk,o (zk,‘, z) + Ak,O (h,zk*o, z) f hk,l (h,) (zk,O, z), Vz E W (D) (3.7) 

Setting z = z k.o in (3.6) and (3.7) and using the selfconjugacy of the operator A”, we 

obtain the formula 
Xk. l (h,) = (A’ (h,) zk, 0 , zk. 0) - hk. 0 (h,z”, 0, zk. 0) (3.8) 

(zk.", zk.0) = 1 

which determines the first correction to the calculation of the eigenvalue hk(h) in the form 
of a linear functional of hr E 9,. 

Taking the above considerations into account, we revert to the input problem (2.1). By 
virtue of 

5s (1 + ehl) dxda = S -+eSSh&da 
D D 

where S is the shell surface area, the input functional takes the form 

SSh,dxda+mhfn, hlEQl 
D 

Selecting X" = Ik3Oi.n (2.1) and using expansion (3.5) and the arbitrariness 

(3.9) 

Of E, we ob- 

tain the limit of the magnitude of the first correction of the eigenvalue h"(h)in the form 

AL.’ (hl) > ‘3, h, E QI (3.10) 

where the quantity hk,r (h,) is defined by Eq.(3.8). Finally we obtain the problem 

1s h, 
h,dxda -+ min, hk- ’ (hl) > 0, hlEQl 

D 

(3.11) 

The set of functions h,. is such that h, EQ, and h k. r (h,) > 0 are convex and closed in 
the topology of Sobolev space, and are summable with the square of the functions together with 
their derivatives up to the first order. Hence the linear functional (3.9) reaches its max- 
imum on the set indicated, and any local extremum is also global. It can be shown /8/ that 
in conformity with functional (3.9) the solution of problem (3.111 differs from the optimal 
in the class of distributions Q by a quantity of the order of et, when b--a = 2~. 

The solution of problem (3.11) is made easier by the fact that to calculate the linear 
functional hk*r(b)it is sufficient to know only the eigenfunctions and eigenvalues of the 
unperturbed problem. 

4. Axisymmetric oscillations. Consider the axisymmetric oscillations of a freely 
supported circular cylindrical shell. The form of oscillations is in this case determined by 
the vector function of a single variable x, x E IO, kl, k = l/R. The equations of state (1.1) 
decompose into the boundary value problem for the component that determines the frequency of 
torsional oscillations 

(f--P) d --dz (h~)-22612(i--)~(h3~)=hho 2 (4.1) 

v (0) = v (k) = 0 (4.2) 

and the boundary value problem for the combined longitudinal and transverse oscillations 

-&(h$)+p-$(hzu)=Xhu 

--)rhG + hw+ 6,2-&(hs$)=ahw 

ZL’ (0) =w(k)=O, ~(O)~.qJLO 

S(O) =q+o, 6+& 

(4.3) 

(4.4) 

Let the shell thickness h(x) vary as given by (3.1). 
of functions such that 

The set Q1 in this case consists 
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k 

0 

(4.5) 

For the seroth approximation we have the equation 

with boundary conditions (4.2) for the function v"(z) and the set of equations 

hc' _- 
dlJ 

(4.6) 

(4.7) 

with boundary conditions (4.4) for the functions uO(z)and w0 (5). The eigenvalues of problems 
(4.6) and (4.7) can be obtained in this case by taking the natural oscillations in the form 

u" (2) = uo COB px, v" (x) = v. sin px. w” (5) = w. sin ~2 (4.8) 

where uo,w~, v. are certain constants and p = nnlk, n = 1, 2,... 
The frequencies corresponding to torsional oscillations defined by Eq.(4.6) are specified 

by the formula 
I.ro = .-+'(I + 4817 (4.9) 

For combined transverse and longitudinal oscillations we have 

Let us formulate the problem of choosing the distribution of the thicknesses in the form 
(3.1) that satisfy the limits (4.51, in order to minimize the volume. (weight) of a cylindrical 
shell whose eigenvalue corresponds to predominantly transverse osillations that are not less 
than the same eigenvalue of a shell of constant thickness h,. To separate the first natural 
frequency, corresponding to predominantly transverse oscillations we will investigate the 
ratio of the amplitudes of the combined longitudinal and transverse oscillations of the form 
(4.8) by substituting them into (4.7). This yields the ratio 

(4.11) 

From (4.11) we can establish for the eigenvalue h," in (4.10) that for p> 1 -&" =i a,,2 
we have 1% I( 1 , and for P<d t we have 1% I> 1. The values of p are calculated to 
within quantities of the order of gId. Similarly 1% I> 1 when p> a~*, and Ix I < 1 when 

p <ao’ for the eigenvalue g in (4.10). This result was obtained earlier in /9/ for 
the special case of a cylindrical shell. 

Using formula (3.8) we can find the correction to the values of the frequencies ha0 and 
A,", when the shell thickness varies as (3.1). 
The operator A’(h) is represented by the components 

From (3.8) we have 
k 

hi.’ (h,) = G 5 hl (x) sin2 p&x, i = 2,3 
0 

From formulas (4.10) and (4.111, after transformations, we obtain 
k 

J.;*' (~=r~Sh,(x)sin* pxdx, i=2,3 
0 

46,'p4(5P - P’)’ 
re = 

k \(k;- P:,' + P’P’! 

4&l ' 
---A$> 0 

k(l-t=) 

(4.121 

The expression for the first correction to the eigenvalue h," for torsional oscillations 
has a similar form 

Al" (hl) =ra$tt sin2pxdx, r3 ;i= Bk-‘p’61’ (1 - p) > 0 (4.13) 
0 
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Since the linear functionals hiez z f&) (i = 2,s) and &@T f&j differ only by constant positive 
l@.iStipli~S, the input protskxz3 can be extended to all three forms of osciflatSons. Let us 
determine the thickness distribution of the form (3.1) with limits (4.5) such that the shell 
weight is a minimum, and the respective frequencies of longitudinal, transverse, and also 
torsional oscillations are not less than the respective frequencies of a shell of constant 
tiickness h,. This implfes the need to solve the following pxobXem: 

5 Ms+xe.~ h&%Qa, ! h,sin*pxdz>O (4.14) 
0 0 

The solution of: vzuriational problem (4.X4) can be obtained fn anafytic farm /lO,ll/, 'Be 
optintum #ickness distribution obtained by axact solutim of the pxoblem es== 96 is shown in 

The relative gain in weight in this case is 38%. For the Case represented in Fig.2 
the gain is close to .50s%. 

An analysis of tit8 results shows that &x all thxee forms af gxisymmetxlc oscillations of 
a CyUndrical shell the optimum thickness distribution &n the middle of tks shefl is + thtck- 
~&ng ia the fom of a rib wM& divides the sbelX into two s:horter sections of ssller 
thickness. A similar result was obtained in /X2/ by numerical calculations fox shells of 
reasonable length. 

5. The non-axispmetuic case, Consider the set of W@ations defining the natural. 
.oscillationsof a cylindx2caf shell (1,1) Witb boundary conditions that correspond to resting 
on ahinged joint /X.3), The fom of the natuxal oscillations of the shell of constant thick- 
nt~ssis then 

U (X, a) = ug 008 p.z sin qu, w (2, a) = Q 84s pz cos q a (5,1) 
w @, a) = w. sin px sin paI p = nnlk, q = m, m, n ss 1,2, . . 

wihexe us. sor w. are constants that axe detennlned f apart froa3 some cOnstar& HrUStiplier, 2x2 the 
solution, af the lineax system of equatiws abtained by the substi~utforr of f5,l) irate the 
emation of state (1.1), The eiganvalues &,'(I =I, 2,3, k -0,1,2,...) are obtained from the 
condition fox the detexminant of the set to be zero. 

Let us formulate the problem of designing a shell, of minimum volume (weight) whose first 
fxequenciesr which correspond to quasitransverse oscillations fox which zs~>n~ax (lcglr?& and 
quasitangential osc;lLLations for which w~(siarftcg,~~~ fW, are not less than the respective 
frequencfes of a shell af constant thickness he 

applying the asmptotic method of Sect, 3, we obtain, king formulas (3.81, the ft&bwing 
expression for the first correction to the calculation of the eiganvalue X01 : 

P@l!=-& s” r fA si@x siaaq= i- B w&z im+xj iQx (8, a)dzda 15*21 

24 = GhPP2 + ~kw @1q 4 i) + (VIP 4-4” “+ 3v[(V~ +” q)SQ + 

wJ*q @x 4” q) 4- $4) @I* i v2 + 1)-l - h,” 

3 Bxatus' A.S. and Kartvelishvili V.M., The method of perturbations in orob&ems of o~thiz- 
ation of the stability, oscil.lation frequencies, and-strength of elaskic plates ofvaxiable 
thickness. Preprint No, 180, mat, Of Problems of Hechanics. AN SSsEt. &iosoow, 1931. 
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The values of 5,' and g depend on the values of k, 6,’ for minimum p = nik. 
Consider the case when LdR = 0.01 . Direct calculations using tables /13/ show that the 

quantity A defined by Eq.(5.2) remains positive for k= 1.2, . ...9. 
This means that the variational problem has the form 

sin*pcr+Bc.o# ~cos~pa kl(z,a)drda>O 1 (5.3) 

We select as A in (5.3) the minimal positive value of all magnitudes defined in (5.2) 
for various Lie, i = t, 2,3. 

In the cases considered here minimum A corresponds to the eigenvalue ha0 which relates 
to quasitransverse oscillations of the shell. 

The solution of problem (5.3) can be 
obtained in some cases in analytic form /lO, 
11/. In particular, the solution that does 
not reach the limit /hII= i, everywhere, except 
on the set of zero measure (lines and points), 
has the form 

Fig.3 
Zd*-++d'-~++~-l, d=s 

By the previous remark, the parameter e 
must satisfy the condition e BO.01 . In this case the integral constraint in (3.2) was taken 
in the form 

(5.4) 

The constraint (5.4) ensures a uniform growth of the derivatives along the directions 
that are parallel to the shell directrices and generatrices. The relative gain with respect 
to the functional is n E (W + 0.25)(4E - 2d + 0.75)-l . For example, in the case when v =I 0.3. h,lR = 
0.01 and k= 4 we have q= 55a%; when k= 6 q= 33e%. 

When the constraint Ih,l=i is taken into account, the solution of problem (5.3) can be 
obtained numerically /ll/. The relative gains are then approximately 1.5 times greater. If 
only positive values of quantities A are considered, then Idl<l. The maximum gain in this 
range of variation of d is iGQs% when d = 0.5, and the minimum gain is 108% when d- -0.125. 

The thickness distribution shown in Fig.2 corresponds to k= 6, h,,/R = 0.01. p = 0.3 , The 
shell is presented in developed form , and for better visualization its middle sectionis partly 
cut out. The form of the thickness distribution obtained is a surface with symmetrically 
located points of local mixima and minima which are staggered , and alternately turn to the 
centre of curvature and away from it. A similar form is obtained for other values. Note the 
lines on the shell development which connect the local points of maximum thickness. This is 
the line that passes through the middle of the shell and is parallel to the directrix, and 
the lines inclined to the shell directrix at an angle y= arctg (kq/Zn) . The disposition of 
these lines provides additional information that can be used to select the optimum directions 
of strengthening elements. 

Thickness distributions are shown in Fig.3 on the assumption that Ir, is a function of 
only one variable a when hdR = 0.01, p = 0.3 and k=4. The relative gain with respect to the 
functional reaches 40EK. In this case the shell has a number of bulges and troughs which 
form a corrugated surface. The number of bulges is determined by q for minimum p = n/k. 

We note in conclusion that the proposed asymptotic method enables the sensitivity of the 
shell natural frequency and of the thickness distribution near the specified supporting sol- 
ution to be investigated. It can also be applied to other types of shells in problems of 
stability and oscillation frequency optimization, as well as in problems of shell bending 
under distributed loads. 
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SOME PROBLEMS OF THE STABILITY OF CYLINDRICAL AND CONICAL SHELLS* 

P.E. TOVSTIK 

The problem of the buckling of a membrane state of stress of a thin elastic 
shell is considered in a linear approximation. It is assumed that the 
buckling is accompanied by the formulation of a large number of dents. In 
the simplest case when the initial stresses and curvature of the middle 
surface are constant, the dents cover the whole shell surface /l-3/. If 
the quantities mentioned are not constant, the buckling pattern is comp- 
licated; localization of the dents can occur in the neighbourhoods of 
certain "weakest" lines /3-5/ or points /6/. The problem of the buckling 
of a shell of zero curvature is considered below. This is characterized. 
by the fact that the dents are stretched strongly along asymptotic lines 
and are localized near one (the weakest). The method is applicable to 
convex conical and cylindrical shells of medium length and not absolutely 
circular section: the shell edges are not necessarily plane curves. The 
two-dimensional problem reduces to a sequence of one-dimensional boundary 
value problems, while for a cylindrical shell, under certain particular 
assumptions,the approximate solution is obtained in closed form. Aconical 
shell is considered, and the changes which must be made in the case of a 
cylindrical shell are outlined. 

1. Let us introduce an orthogonal system of coordinates s,cp on the middle surface of 
a conical shell, where s =sOR-1 s" I is the distance to the apex of the cone, R isthe charact- 
eristic dimension of the middle surface, and cp is a coordinate on the directrix, selected in 
such a manner that the first quadratic form of the surface has the form du'=lP(~ +zdqq. 
Here the radius of curvature is RI = RS'. Let the shell be closed in the m direction and 
bounded by two edges (cpI is the length of the curve formed when the cone and a sphere of 
radius R with centre at the apex of the cone intersect) 

.% (cp) <s < sa (cp)? 0 d cp d ml 

We will use the set of shallow-shell equations 

e4Azw + XArw + A,@ = 0, eaAgQ, - Arw = 0 

(1.1) 

(1.2) 
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